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Why Human Behavioral Ecology Needs Behavioral Genetics:
The Problem of Phenotypic Gambit

Janko Međedović
Institute of Criminological and Sociological Research, Belgrade, Serbia

The phenotypic gambit is one of the crucial assumptions in evolutionary behavioral
ecology: it asserts that a phenotypic variation of a trait represents a reasonably adequate esti-
mation of its genetic variation. This is particularly important since one of the main goals of
behavioral ecology is to analyze the patterns of natural selection on phenotypic traits—the
phenotypic gambit allows only the measurement of phenotypic variance of a trait, without
exploring its genetic variance. The phenotypic gambit is crucially dependent on heritability
itself—if there are systematic factors that decrease heritability, there is elevated chance for
phenotypic gambit to fail. We argue that there is at least one ecological condition, harsh
environment, which is related to markedly lower heritability of life history and behavioral
traits in humans. Hence, the measurement of phenotypic variance of a trait may generate
invalid results, at least for participants who originated from harsh environmental conditions.
As a solution we propose the integration of behavioral ecological and behavioral genetic
research designs: this integrative design allows researchers to partition the genetic and envi-
ronmental variances of an examined trait and to obtain genetic correlations between the trait
and fitness proxies. Furthermore, it enables that ecological conditions can be analyzed as a
moderator in this link. Due to the strengths of integrated design, we believe that this research
approach may be highly fruitful for the future studies in evolutionary human sciences.

Public Significance Statement
Empirical research of behavioral evolution is often conducted only on phenotypes;
however, evolutionary processes are unfolding on a genetic level. Observed pheno-
typic data may not hold on a genetic level, especially in certain ecological conditions.
Therefore, we propose closer collaboration between human (evolutionary) behavioral
ecology and behavioral genetics and emphasize that this cooperation would benefit
and advance both research fields.

Keywords: phenotypic gambit, human behavioral ecology, behavioral genetics, fitness,
harsh environment, life history, personality

Phenotypic Gambit in Human Behavioral
Ecology

Human behavioral ecology represents a
unique scientific discipline which bridges
natural and social sciences. It is an extension of

behavioral ecology—a subdiscipline of evolu-
tionary biology aimed to explore morphological,
physiological, and behavioral traits in the light
of evolutionary theory (Birkhead & Monaghan,
2010). The central term in human behavioral
ecology, similarly to evolutionary biology, is
fitness. It is defined broadly as a probability of
transferring individual genes from one genera-
tion to the next (Hunt & Hodgson, 2010); this
probability has the highest contingency to the
lifetime number of offspring—this is why repro-
ductive success is most frequently used as the
main fitness proxy. The basic method of human
behavioral ecology is based on analyzing the
relations between behavioral traits of interest
and fitness—if such relations exist, they suggest

Janko Međedović https://orcid.org/0000-0001-6022-
7934
The author would like to express his gratitude to Denis

Bratko for his constructive and helpful comments on the pre-
sent manuscript.
The author declares no conflict of interest.
Correspondence concerning this article should be
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that examined behavioral traits are under natural
selection. Hence, the empirical research of cur-
rent selection regimes on human behavioral,
morphological, and physiological traits repre-
sents a fundamental research goal in human
behavioral ecology—this is the only empirical
way to analyze adaptive function of the trait
(in an evolutionary sense) and to estimate the
effects of selection to the future mean population
levels of a trait. The main assumption of behav-
ioral ecology is that populations adapt to their
local environments—this means that a certain
behavioral trait is not universally adaptive, but
it can increase fitness only in certain eco-
logical conditions. Having in mind that humans
populate various ecological niches, human
behavioral ecology can explain the diversity of
human behavior both within and between
populations.
Note that the definition of selection is based

solely on the covariation between a trait and fit-
ness—if this association exists, we may conclude
that natural selection acts upon a trait. However,
this does not mean that a trait will respond to
selection. In fact, response to selection may
occur only if there is genetic covariation between
a trait and fitness. However, most of the research
in the field of human behavioral ecology is con-
ducted only on the phenotypic measures of ana-
lyzed traits. The underlying rationale for this is
an assumption of phenotypic gambit (Grafen,
1984; Krebs & Davies, 1978). This assumption
states that the phenotypic variance of a trait is rea-
sonably valid estimation of its genetic variation
(van Oers & Sinn, 2011); furthermore, it implies
that the genetic architecture of a trait does not
represent a constraint for its phenotypic evolution
(Fawcett et al., 2013). As a result, researchers
may explore only phenotypic trait values and
their relations with evolutionary fitness (Rubin,
2016). If the covariation between a trait and fit-
ness is detected, then researchers can reasonably
assume that this covariation is partly based on
a trait’s genetic variance; consequently, we can
expect phenotypic changes in the mean levels
of the trait across generations due to directional
selection or reduction in its variation in a case
of stabilizing selection. The phenotypic gambit
is one of the fundamental assumptions in behav-
ioral ecology—it allows that empirical studies
do not estimate genetic variation directly, they
can rely solely on phenotypic information
instead. Indeed, there are empirical findings

which show that phenotypic gambit may be a
solid assumption in both humans (Sodini et al.,
2018) and other animals (Brommer & Kluen,
2012). On the other hand, the phenotypic gambit
has been criticized on various grounds, espe-
cially because it oversimplifies the relations
between the genotype and phenotype (Dall et
al., 2019). Furthermore, the assumption that
genetic architecture does not constrain the evolu-
tion of a trait may too be invalid (Hadfield et al.,
2007; Rubin, 2016).
In the present manuscript, we aim to question

the phenotypic gambit on the ground of heritabil-
ity itself. Heritability is usually defined as a pro-
portion of a phenotypic trait’s variation which is
explained by its genetic underpinnings. It is a
population statistic that is sensitive to cohort
characteristics, ecological conditions, and even
the age of individuals in which is estimated.
Heritability can be estimated using various meth-
ods; some of the most frequent ones are twins and
family studies (where heritability is estimated via
comparing phenotypic correlations between the
individuals varying in genetic resemblance;
e.g., Posthuma et al., 2003), pedigree data (also
known as “animal” model, where heritability is
derived from the similarity in phenotypic traits
of individuals sharing the same biological line-
age; e.g., Bochud, 2012; Milne et al., 2008;
Schwartz et al., 2015) or the samples of unrelated
individuals where a large number of genetic
polymorphisms is used to infer heritability—
genome-wide association studies or GWAS and
genome-wide complex trait analysis or GCTA
(e.g., Yang et al., 2011). Although natural selec-
tion potentially may act on any trait, a response to
selection will crucially depend on trait’s herita-
bility because evolutionary changes are based
on the change of the frequency of gene alleles
which contribute to the trait’s phenotypic expres-
sions. However, heritability estimates tend to be
variable: this fact represents a problem for pheno-
typic gambit per se, because in conditions of low
heritability, the phenotypic gambit has a higher
probability to fail (van Oers & Sinn, 2011).
Furthermore, we would like to emphasize an
additional condition which may systematically
deplete heritability, the one which may be
especially important in a behavioral ecological
research—harsh environment. First, we would
like to illustrate the problem of phenotypic gam-
bit by analyzing heritability estimates in life his-
tory and behavioral traits.

MEĐEDOVIĆ2
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The Problem of Phenotypic Gambit:
Variation in Heritability Coefficients

Heritability Coefficients of Life History Traits

Behavioral ecologists believe that in order to
understand how individuals maximize fitness
we should measure various indicators related
to reproductive, parental, or longevity-related
behavior. The most frequently measured traits
and events are reproductive success, age of first
and last reproduction, pubertal timing, onset of
sexual behavior, number of sexual partners, and
parental investment (Belsky, 2012; Mell et al.,
2018; Xu et al., 2018). A conceptual framework
which analyzes the relations between these indi-
cators using evolutionary theory is called life
history theory (Bolund et al., 2016; Roff,
2002). Life histories of individuals are heavily
dependent on the ecological conditions. One
of the main ecological determinants of life
history dynamics is environmental harshness.
Generally, it is assumed that harsh, stressful,
low resource, and hostile environments are
related to life history patterns aimed at maximize
fertility: earlier maturation, onset of sexual
behavior and first reproduction, short-term
mating, higher reproductive success, followed
by a decrease in parental investment and overall
health. In contrast, a beneficial and supporting
environment, abundant with resources, is associ-
ated with the opposite trend: delayed maturation,
onset of sexual behavior and first reproduction,
long-term mating patterns, lower number of off-
spring with elevated parental investment, and
increased levels of health and longevity. The for-
mer pattern of life history indicators is labeled as
a “fast” life history pathway, while the latter is
labeled as “slow” (Del Giudice et al., 2015).
Various characteristics of harsh environment
have been found to positively associate with
the fast life history trajectory: frequency of vio-
lent crimes (Copping & Campbell, 2015), higher
mortality rates and lower life expectancy on
birth (Griskevicius et al., 2011; Wilson & Daly,
1997), lower socioeconomic status (Sheppard et
al., 2016), violent intergroup conflict
(Međedović, 2019a), the absence of a father
(Webster et al., 2014), lack of maternal sensitiv-
ity (Dunkel et al., 2015), troubled family rela-
tions (Chisholm et al., 2005), and so on. It is
important to note that the application of life
history theory in explaining human individual
differences and especially the existence of

fast–slow continuum has been recently criticized
(Međedović, 2020, 2021; Sear, 2020; Stearns &
Rodrigues, 2020; Zietsch & Sidari, 2020). Still,
other authors believe that the slow–fast dimen-
sion of life history dynamics is still useful in
interpreting the data, although the scholars
should invest more effort to refine life history
framework and provide more complex models
for its application in humans (Del Giudice,
2020; Galipaud & Kokko, 2020).
Life history traits are heritable, although the

proportion of genetic variance in life history
traits is lower than the one in morphological or
behavioral traits in both humans (Stearns et al.,
2010) and other animals (Visscher et al., 2008).
Certainly, the most central life history trait is
reproductive success itself—the number of bio-
logical children an individual has also labeled
as fertility. Family and pedigree studies yielded
similar results regarding the heritability of repro-
ductive success. First, most of the twin studies
found additive genetic variation in reproductive
success (e.g., Colodro-Conde et al., 2013;
Kohler et al., 2002; Polderman et al., 2015;
Silventoinen et al., 2013; reviewed in Mills &
Tropf, 2015). Furthermore, they revealed that
the heritability of reproduction success highly
varies between the cohorts of participants
(Briley et al., 2015) or estimates of fertility in
different stages of ontogeny (Rodgers et al.,
2007)—this variation ranges from zero to moder-
ate effect sizes.
Pedigree studies estimates are lower in mag-

nitude (e.g., Bolund et al., 2013 [fertility is esti-
mated as the number of grandchildren in this
study]; Bolund & Lummaa, 2017) but impor-
tantly, the range of heritability estimates is also
high—when comparing fertility in different life
stages (Pettay et al., 2008) or different samples
(Milot et al., 2011; Pettay et al., 2005), coeffi-
cients range from nonsignificant to moderate
ones.
Quite similar empirical data exist for other life

history traits. Data also show that heritability
coefficients of the age of first reproduction highly
vary—from near-to-zero to moderate effect sizes
(Mills & Tropf, 2015). Both twin (Briley et al.,
2015; Silventoinen et al., 2013; Tropf, Barban,
et al., 2015) and pedigree methods converge to
this conclusion (Bolund et al., 2013; Bürkli &
Postma, 2014). The data on age of menarche
are a bit different: estimates show higher herita-
bility, compared to reproductive success and
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age of first reproduction, which ranges from 50%
to 70% depending on the method of estimation
and sample characteristics (Sørensen et al.,
2013; Sulem et al., 2009; van den Berg &
Boomsma, 2007). The heritability of other life
history traits has been examined as well; how-
ever, the research on other traits is still quite
scarce sowe cannot reliably estimate the variabil-
ity of heritability coefficients. Nevertheless, sig-
nificant heritability coefficients have been
found in breastfeeding (as an indicator of parental
investment), the onset of sexual behavior, the
number of sexual partners, and the probability
of being married (Cherkas et al., 2004;
Colodro-Conde et al., 2013; Trumbetta et al.,
2007; Waldron et al., 2007).

Explaining Heritability Variation in Life
History Traits: Implications for Current Life
History Evolution

The variation in heritability coefficients cer-
tainly has multiple causes; some of the frequently
detected parameters which influence this varia-
tion are the age and sex of participants (Mills &
Tropf, 2015). There are environmental causes
in this variation as well. It has been noted that
heritability of fertility and age of first repro-
duction changes across the cohorts in the late
19th and whole 20th century—generally the
data point to the conclusion that heritability is
higher when demographic transitions started to
unravel (Kohler et al., 2002); for example, herita-
bility is higher in individuals born between 1936
and 1955 compared to the 1920–1935 cohort
(Briley et al., 2015; however, in the 1956–1970
cohort the heritability of fertility persisted but
not the one of the age of first reproduction).
Heritability of fertility was also higher in urban,
compared to rural environments (Bras et al.,
2013). One of the explanations for these results
is that in demographic transition populations
(characterized by lower fertility partially caused
via accessible methods of birth control), urban
environments, and later 20th-century generations
there was enhanced choice in making reproduc-
tive decisions (Briley et al., 2015; Udry, 1996).
Perhaps it sounds counterintuitive that the ele-
vated choice in fertility-related behavior gives
rise to the genetic underpinnings of the same
behavior. However, this explanation becomes
apparent if we note the following: (a) the role
of social and environmental factors in a broader

sense has decreased in these contexts, which
allowed genetic mechanisms to influence behav-
ior in a greater extent; (b) motives for childbear-
ing, including the number of desired children are
heritable psychological traits as well (Miller et
al., 2010; Pasta & Miller, 2000), hence, when
individuals have a choice to make their reproduc-
tive decisions, this choice is partly a result of
underlying genetic variation. The data of shared
genetic variation between fertility motivation
and observed number of children are clearly in
line with the previous explanation (Rodgers et
al., 2001).
The data on elevated heritability of fertility in

urban environments can be explained by other
processes postulated in behavioral genetics that
have high relevance for behavioral ecology as
well: genotype–environment correlations or
rGEs (Meek et al., 2013). There are three types
of these correlations: passive, evocative, and
active (Plomin et al., 1977). Passive correlation
describes the congruence between parental geno-
type and parental behavior toward offspring;
evocative correlation highlights the responses
from children toward their environment that fur-
ther guides their development. Finally, active
correlation describes the tendency of individuals
to search for new environments that suits their
genetic potentials; therefore, changing the envi-
ronments may lead to a better match between
ecological conditions and genetic dispositions.
Furthermore, if we choose environments in
order to be suited for our genetic dispositions,
this would enable higher genetic expressions on
behavior, and consequently the increase in heri-
tability estimates. This is why active genotype–
environment correlation can explain higher heri-
tability of fertility in urban environments, espe-
cially in conditions of elevated migration from
rural to urban ecologies. The conceptual benefits
of active genotype–environment correlation for
behavioral ecology are apparent—if changing
environments leads to better functioning in
new ecological conditions, this behavior may
be viewed as an adaptation. However, as far as
we are aware, there is no empirical research in
humans that examine active genotype–environ-
ment correlation in the context of biological
adaptation so far—this remains a fruitful topic
for future research.
The magnitude of heritability coefficients

is linked to environmental harshness as well—
broadly viewed as the level of deprivation, lack
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of resources, hostile, and stressful environments
versus beneficial, resource-abundant, and sup-
porting environments. It has been noted that the
genetic variation in number of children and
grandchildren is higher in landowning compared
to landless families (Bolund & Lummaa, 2017).
Intriguing findings are obtained on the heritabil-
ity of first sexual intercourse—genetic variation
explained 39% of the onset of sexual behavior’s
phenotypic variation in females without the his-
tory of child sexual abuse; however, in women
who reported sexual abuse in childhood, the
genetic influences on the age of first intercourse
drops to zero (Waldron et al., 2008). Hence, the
percentage of genetic variation in phenotypic
values of life history traits is higher in favorable
environments, a finding which is obtained in
other animals as well (Visscher et al., 2008).
Note that the levels of harshness are probably
related to the level of individual freedom dis-
cussed earlier: more supporting and beneficial
environments are likely the same ones which pro-
vide higher freedom to make choices about sex-
ual and reproductive behavior.
Thus, the variation in heritability of life history

traits may represent one of the constraints for
their evolution, and it may cause the failure of
phenotypic gambit. There are empirical data
which suggest that this indeed may be the case.
For example, one study found low but significant
positive association between breastfeeding and
reproductive success (interestingly, life history
theory would predict a negative association
between these traits1)—this finding alone could
suggest that breastfeeding may be under positive
directional selection; nevertheless, the genetic
association between these two traits was not stat-
istically significant (Colodro-Conde et al., 2013).
A more striking example comes from the study
which investigated sex differences regarding
selection on several life history traits (Bolund et
al., 2013). Phenotypic analysis showed that sex
moderated relations between age of first and
last reproduction, and fitness (i.e., reproductive
success)—this finding implies sexual selection
on these traits which may result in heightened
differences in timing of reproduction between
males and females. However, genetic correlations
between life history traits and fitness were quite
similar in both sexes, the finding that suggests
an opposite process—a convergent life history
evolution in males and females. Another study
(Beauchamp, 2016) showed positive associations

between body mass and fitness and negative
between female height and fitness, but there
were no genetic associations between these traits;
phenotypic gambit held only for educational
level which showed negative genetic and
phenotypic associations with fitness. Finally,
there is even evidence of a larger discrepancy
between genotypic and phenotypic levels
of analysis—associations which have opposite
signs. Sanjak et al. (2018) obtained some con-
verging links between life history traits and fit-
ness (e.g., negative association between age of
first birth and fitness) but they found positive
relation between age of menopause and fitness
on the phenotypic and negative on the genetic
level.
Hence, there are empirical data that cast a

doubt on the phenotypic gambit’s reliability.
Furthermore, there is reason to doubt phenotypic
gambit even when there are mirroring associa-
tions on phenotypic and genetic levels. One of
the key assumptions of life history theory is
related to local ecologies: a harsher and depriving
environment should facilitate the evolution of
phenotypes which contribute to reproductive out-
put and early fertility, including morphological,
physiological, behavioral, and life history traits
in a narrow sense. However, previously
described data on life history traits’ heritability
showed lower heritability coefficients in the con-
ditions of a harsh environment. Therefore, it is
questionable whether genetic correlations
between life history traits and fitness would
hold in subpopulations characterized by harsh
environmental conditions—the mere lack of
genetic variation may constrict covariation with
fitness as well. In these cases, a fast life history
phenotypic response in a harsh environment
would not be a consequence of genetic evolution

1 Breastfeeding is a form of parental investment; one of the
major evolutionary tradeoffs is the one between quality and
quantity of offspring—this tradeoff implies that parents can-
not invest as much if they have higher number of offspring
compared to fewer offspring. Parental investment can evolve
if individuals with lower number of offspring can have off-
spring with elevated quality by increased investment in
them. In the life history context, fast life history trajectory
would be depicted by higher reproductive success and
lower parental investment; inverse pattern should characterize
slow life history. The cited study shows that this prediction
cannot hold in populations where fertility is generally low
—quantity–quality tradeoff can be more easily found in nat-
ural fertility populations (Gillespie et al., 2008; Meij et al.,
2009).
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but the processes which act on an ontogenetic
level like developmental and behavioral plastic-
ity (Nettle & Bateson, 2015).

The Case of Behavioral Traits—Personality
and Cognition

A personality trait is any behavioral pattern
that is relatively stable in time, and that shows
considerable inter-individual differences in a
population. There are many taxonomies of
human personality traits; one of the most pro-
minent is the Big Five personality model
(John et al., 2008) which consists of five traits:
Extraversion (sociability, activity, positive affec-
tivity), Neuroticism (negative emotionality),
Agreeableness (cooperation, empathy, altruism),
Conscientiousness (orderliness, behavioral con-
trol), and Openness to experience (inquisitive-
ness, creativity). Personality traits are adaptive
behavioral dispositions (at least at certain levels
of traits’ expressions)—a fact which is reflected
in their relations with fitness in both humans
(Allen & Robson, 2018; Gurven et al., 2014;
Međedović et al., 2018) and other animals
(Smith & Blumstein, 2008). In fact, it is shown
that every one of the major human personality
characteristics is associated with fitness, although
the obtained links may vary as a function of sam-
ple characteristics (Penke & Jokela, 2016).
Personality traits show moderate heritability—
around 40% (Vukasović & Bratko, 2015); this
fact, combined with their association with fitness,
marks their potential to evolve under natural
selection.
Unfortunately, there are only a few studies

which examine if the link between personality
and fitness exists on genetic level as well. In
fact, some data showed that phenotypic gambit
may apply to human personality: certain findings
showed the same phenotypic and genetic associ-
ations between personality traits and fitness
(Berg et al., 2016; Briley et al., 2017; the matrix
of phenotypic associations between personality
traits and fitness in the latter study was obtained
via personal communication with the first
author). However, it is highly debatable if these
associations would hold in every sample. The
heritability of personality is highly variable and
depends on numerous characteristics of the ana-
lyzed samples (Bratko et al., 2017), including
the age of the participants (Kandler et al.,
2021). Furthermore, environmental harshness

turned out to be an important determinant of her-
itability in personality as well: it has been found
that the heritability coefficients are lower in par-
ticipants who received more negative and stress-
ful parental behavior (Krueger et al., 2008).
There are findings showing that the heritability
of the Emotional Dysregulation trait (which is
similar to the trait Neuroticism) drops almost
to zero in environments with high family con-
flict (Jang et al., 2005). The existing data imply
that the heritable variation in personality
may be reduced in conditions of environmental
harshness.
The hypothesized role of the environment in

the heritability of behavioral traits is even more
convincing for cognitive abilities. Intelligence
is a broad term to capture cognitive abilities
related to problem solving and it has a profound
influence on various behaviors and life out-
comes. Furthermore, intelligence is a trait
which probably has the highest heritability
among the human behavioral characteristics—
estimates even go to 80% (Sauce & Matzel,
2018). While it is quite plausible to hypothesize
that cognitive abilities evolved as an adaptation,
there is an ongoing debate whether intelligence
is adaptive in contemporary humans, due to a
mismatch between adaptations and environment.
This debate is reflected in empirical data as well:
both negative (Reeve et al., 2013; Shatz, 2008)
and positive (Kolk & Barclay, 2021;
Međedović, 2017) associations were detected
between the phenotypic scores of intellectual
performance and fitness. Hence, examining the
current evolution of intelligence remains an
intriguing and exciting task. Various factors con-
tribute to the variation of heritability estimates in
intelligence; for example, age seems to be an
important cause of heritability coefficients’
increase in cognitive abilities (Haworth et al.,
2010). Furthermore, there are differences in her-
itability of intelligence in different environmen-
tal conditions—the data show that heritability
estimates are lower in individuals who grew up
in the conditions of economical poverty
(Tucker-Drob et al., 2013). There are studies esti-
mating the heritability of intelligence to be 72%
in wealthy, compared to 10% in children living
in economic deprivation (Turkheimer et al,
2003). Although, it must be noted that the effect
of harsh environment on the heritability estimates
of intelligence is more common for some coun-
tries than others; for example, the effect is
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T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



ubiquitous in the United States but practically
absent in Australia (Bates et al., 2016; Tucker-
Drob & Bates, 2016). Hence, harsh environment
may not be necessarily linked to heritability
depletion in cognitive abilities and this associa-
tion may be dependent on other ecological condi-
tions. There are additional critiques of this
assumption as well—some data suggest that
lower heritability estimates in poorer environ-
ments are not the consequence of lower additive
genetic variation but elevated shared environ-
mental variance (Hanscombe et al., 2012).
Nevertheless, such a high range in intelligence’s
heritability can represent a major obstacle in the
research on its contemporary evolution if only
phenotypic scores of cognitive abilities are ana-
lyzed: low heritability decreases the chances
that the covariation between the trait and fitness
will be found on a genetic level. Consequently,
it diminishes the possibility that the trait would
respond to natural selection.

Particularly Vulnerable Traits—Adaptations
to Harsh Environment

Behavioral ecologists often explicitly analyze
ecological conditions as factors which moderate
the links between a trait and fitness, that is,
there are traits which may be adaptive only in cer-
tain conditions. In fact, there are behavioral traits
which are assumed to be adaptive especially in
harsh environments. An example of such a trait
is psychopathy—it represents a behavioral syn-
drome consisting of several traits: diminished
tendency to generate negative emotions (espe-
cially fear, guilt, and empathy), manipulative
and deceitful behavior, and lower behavioral
control based on impulsivity and disinhibition
(Hare, 2003; Lilienfeld & Andrews, 1996;
Patrick et al., 2009). Similarly to other per-
sonality traits, psychopathy was shown to have
moderate heritability (Tuvblad et al., 2019).
Evolutionary ecological analysis suggested that
psychopathy may positively contribute to evol-
utionary fitness although the adaptiveness of
psychopathy may be dependent on its frequency
in a population—psychopathic phenotypes may
be adaptive only if they are rare (Mealey,
1995). Furthermore, it is assumed that psycho-
pathy can increase fitness especially in the
harsh environmental conditions (Glenn et al.,
2011). Psychopathic affectivity may represent a
trait which enables individuals to overcome

adaptive challenges more successfully in such
environment because it elevates stress tolerance.
Despite the fact that psychopathy is mainly
viewed as a maladaptive, even pathological
trait, empirical data confirmed behavioral eco-
logical predictions: manipulative and affective
traits were found to elevate reproductive fitness
(Međedović, 2019b; Međedović & Petrović,
2019) and adaptive potentials of psychopathy
are indeed more expressed in a harsh, depriving,
and stressful environment (Međedović, 2019c;
Međedović et al., 2017). However, the above-
mentioned associations were obtained only on
the phenotypic level. Since the possibility that
psychopathic traits have lower heritability in a
harsh environment is at least plausible, we can
pose a question whether these links can be repli-
cated on a genetic level as well. Unfortunately,
there are no empirical research studies that exam-
ine genetic associations between psychopathy
and fitness, especially the ones which explore
these links in various environments so far.

A Possible Solution: Integration of Behavioral
Ecology and Behavioral Genetics

Behavioral Genetics and Its Application to
Human Behavioral Ecology

It seems that the phenotypic gambit cannot be
sustained in all circumstances; furthermore, there
are environmental conditions, such as harsh envi-
ronment, which elevate the probability of pheno-
typic gambit’s failure. The solution seems
apparent: behavioral ecologists need genetic
information which could allow them to more val-
idly and reliably infer if the trait under natural
selection would indeed respond to selection.
Molecular genetics has been largely unsuccess-
ful in determining gene variants which partici-
pate in a phenotypic expression of behavioral
traits (Jarnecke & South, 2017), mostly due to
their highly polygenic nature; gene-candidate
studies showed to be particularly prone to fail
in replicating the findings about the specific
genetic polymorphisms related to behavioral
traits, while GWAS studies have higher chance
to find and replicate the findings on molecular
genetic basis of behavior (Chabris et al., 2015).
Among several methods, behavioral genetics,
as a quantitative genetics applied to behavior,
seems to have the highest analytic potential
since it can partition the phenotypic variation

BEHAVIORAL ECOLOGY AND BEHAVIORAL GENETICS 7

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



of a trait into the genetic and environmental var-
iance components, allowing analyses to be per-
formed on both variances (Plomin et al., 2008).
Furthermore, compared to some other methods
of heritability estimation, behavioral genetics
provides higher genetic variation estimates:
other methods such as GWAS are characterized
by missing heritability, which results in lower
heritability estimates (Manolio et al., 2009;
although it must be said that GWAS studies
have substantial contribution to understanding
genetics of reproductive-related traits: Gajbhiye
et al., 2018). The integration of behavioral genet-
ics in evolutionary human sciences has been pro-
posed on several previous occasions (see Barbaro
et al., 2017). These appeals came mostly from
evolutionary psychology (Zietsch et al., 2015);
however, due to their theoretical assumptions
(e.g., evolutionary mismatch hypothesis; Li et
al., 2018), evolutionary psychologists do not
aim to empirically estimate current selection
regimes on behavioral traits (i.e., they do not
measure current fitness). Hence, we are focused
on ways behavioral genetics can help behavioral
ecologists analyze the relations between behavio-
ral traits and fitness.
Behavioral genetics uses information about

the genetic similarity between individuals to esti-
mate heritability. The most prominent behavioral
genetic methodology is based on the examination
of the phenotypic traits in twin pairs: heritability
is estimated by comparing correlations of pheno-
typic traits in monozygotic and dizygotic twins
(Plomin et al., 2008). But more importantly,
this method allows for decomposing the pheno-
typic trait’s variation into genetic, shared envi-
ronmental (the environment which is common
for both twins such as family context), and
unique environmental variation (the events and
experience which is unique for every member
of a twin pair). Shared environment results in
heightened similarity between the twins, whereas
non-shared environment contributes to the differ-
ences between the twin-pair members. Hence,
every analysis may be performed on phenotypic,
genetic, and environmental variation of exam-
ined phenotypical measures (shared environmen-
tal variance is quite low for many traits, therefore,
for such traits only unique environmental varia-
tion is suitable for separate analyses).
The main benefit of behavioral genetics is the

ability to perform direct testing of phenotypic
gambit. The majority of behavioral genetics

studies compare phenotypic and genetic correla-
tions of the examined variables. But in behavio-
ral ecology, the baseline research design should
be a bit more complex. The integration of behav-
ioral ecology and behavioral genetics must
include at least four sets of variables: (a) the traits
which represent target concepts of the research—
life history, physiological, morphological, or
behavioral traits; (b) fitness proxies—reproduc-
tive success (number of children and grandchil-
dren), longevity, parental investment, and so
on; (c) genetic information—in this case, repre-
sented as genetic variation in general, not specific
alleles or other polymorphisms; (d) environmen-
tal conditions—harsh environment or other eco-
logical variation of interest. Thus, the method is
not simply based on conducting separate analy-
ses on genetic and environmental variation of
certain traits—the crucial hypotheses involve
testing the environmental conditions as a moder-
ator in the link between certain traits and fitness.
This means that the analysis must involve two
steps: first, a researcher removes the environmen-
tal variation of analyzed variables, leaving only
genetic variation for further examination; after-
wards a researcher should analyze if the genetic
links between the trait and fitness exist in differ-
ent environments (e.g., harsh and beneficial). For
example, if we want to obtain unambiguous
evidence of natural selection’s influences on psy-
chopathy we analyze the genetic link between
psychopathy and reproductive success; subse-
quently, we examine if this (genetic) link holds
for various environmental conditions or if it
exists only in certain ecologies.
Basic conceptual frameworks for these analy-

ses already exist in behavior genetics. The
hypothesis that genetic links between a trait and
fitness exist only in certain environments is con-
gruent with the concept of gene—environment
interaction (Manuck & McCaffery, 2014;
Shanahan & Hofer, 2005). It is often defined as
genetic control of sensitivity to various environ-
ments, or equivalently, as the environmental
control of differential gene effects. In behavior
genetics research, the particularly important
design incorporates genetic variation operation-
alized as a latent variable (e.g., additive genetic
variance) with environment as a measured vari-
able (e.g., socioeconomic status, childhood
stress, social ostracism). Behavior geneticists
typically examine if heritability coefficients for
a given trait vary across different environments
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(Purcell, 2002). In a behavioral ecological con-
text, we could examine genetic associations
between traits and fitness across different
environments.
This said, it is important to mention the limita-

tions of behavioral genetics as well. The most
common criticisms point to two problems; firstly,
the assumption of shared environment may be
invalid - do parents have the same behavior
toward twins, especially dizygotic ones?
Because if they not, the shared environmental
influences are not the same for dizygotic twines
as the model expects. Secondly, twin samples
may not be representative for the whole popula-
tion; hence a problem of findings’ generalizabil-
ity emerges (e.g., Burt & Simons, 2014; Jarnecke
& South, 2017). Another problem refers to assor-
tative mating: if couples’ pairing is based on sim-
ilarity in certain traits, this may influence
biometric parameters by increasing the heritabil-
ity estimates (Ruby et al., 2018). However, other
researchers pointed out that possible violations of
biometric modeling assumptions do not invali-
date the results of behavioral genetic analyses.
For example, it is shown that the hypothesis of
equal shared environment for monozygotic and
dizygotic twins is rarely violated, and even if it
is it has very low and unsystematic effect on her-
itability estimates (for a detailed discussion on
this topic, see Barnes et al., 2014). Still, some
specific aspects of generalizability criticism can
be especially important for behavioral ecology:
by examining only twins, behavioral genetic
studies exclude families with low fertility; fur-
thermore, dizygotic twinning is genetically
based which means that including dizygotic
twins in a study sample may produce biased esti-
mations of fertility-related traits (Tropf, Stulp, et
al., 2015).

Additional Potentials of a Behavioral Ecology/
Genetics Integrated Design

The partition of a trait’s variation into genetic
and environmental ones is the most basic behav-
ioral genetic design. The methodology pro-
vides more complex designs based on structural
modeling that are of clear importance for
behavioral ecology. Therefore, although we
were focused on a harsh environment as a factor
which decreases heritability and consequently
questions phenotypic gambit, we would like to
provide other reasons for the integration of

behavioral ecology and genetics. We do not
aim to present a comprehensive review, but
examples of heuristic powers embedded in inte-
grated design.
In behavioral ecology it is very rare to explore

the link between a single trait and fitness—mul-
tivariate designs are frequently applied, the
ones where associations between the suits of
traits and fitness are estimated simultaneously
(Sinervo & Calsbeek, 2010). This is of utmost
importance since various characteristics of indi-
vidual differences are related between them-
selves, both on a phenotypic and genetic level.
The latter associations are the result of genetic
pleiotropy—a situation where a single genetic
variant or a suit of variants are associated with
several phenotypic traits. Pleiotropy has an
important implication for behavioral ecological
analysis; for example, a trait does not need to
be directly genetically related to fitness in order
to be under natural selection—it may be affected
by selection if it is genetically associated with
other traits linked with fitness. An example
comes from one of the rare research which
explored genetic associations between personal-
ity traits and fitness: the data showed that
the Neuroticism trait is not related to reproductive
success on a genetic level; however, Neuroticism
was genetically negatively associated with
Extraversion, a trait found to elevate the number
of children on a genetic level (Berg et al., 2016).
Therefore, if we analyzed only bivariate genetic
associations between personality traits and fit-
ness we may erroneously conclude that
Neuroticism is selectively neutral; however, it
may be under negative directional selection via
its genetic associations with Extraversion.
Multivariate models provide another advantage
besides biologically more valid estimation of
traits’ evolution due to the presence of pleiotropy
and correlational selection—exploration of mul-
tivariate genetic constraints on traits’ change
under natural selection (Walsh & Blows, 2009).
The problem of causality is present in behavio-

ral ecological research as well—the most valid
information on selective forces acting on a trait
should demonstrate that trait affects fitness, not
vice versa (but vice versa is plausible as well,
for example, having children may change person-
ality traits of parents: Jokela et al., 2009). Hence,
longitudinal designs enable more convincing
data in behavioral ecology, similar to other scien-
tific disciplines. Behavioral genetics provide an
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additional piece of information to these designs:
by using Cholesky models behavioral geneticists
may analyze if genetic variation of a trait
obtained at an earlier age can predict variation
in fitness at a later age (preferably in a post-
reproductive period of ontogeny). For example,
Rodgers et al. (2007) found that genetic factors
which are positively associated with early fertil-
ity (at the age of 20 years) are negatively associ-
ated with later fertility (at the age of 30 and 35
years). This finding suggests that the same
genetic variants may have opposite effects on fit-
ness in different stages of ontogeny.
There is another exciting paradigm in animal

behavioral ecology which examines social evolu-
tion of the traits—it is labeled as indirect genetic
effects or interacting phenotypes (Bailey et al.,
2018; Wolf & Moore, 2010). Indirect genetic
effects emerge if the phenotype of a focal individ-
ual is influenced by the genotype of its social
partners. Hence, the environmental variation
examined in this framework is social, not the phys-
ical environment—in principle, every individual
that has interactions with the focal individual
can be analyzed as a source of indirect genetic
effects. One of the apparent social partners ana-
lyzed in empirical research are mating partners
(Danielson-François et al., 2009) and parental
dyads (Head et al., 2012). Unfortunately, interact-
ing phenotypes are not yet studied in human
behavioral ecology, at least as far as we are
aware. This is unfortunate because they provide a
unique theoretical perspective which may provide
more valid and precise estimations of traits’ evolu-
tion since interactive phenotypes can bias evolu-
tionary trajectories and elevate traits’ response to
selection (Bailey et al., 2018). Behavioral genetics
can provide an adequate platform for examining
indirect genetic effects in humans. The logic of a
research design is similar to previously described
studies focused on environmental harshness. We
could use twin designs to decompose the variation
of a trait into genetic and environmental compo-
nents; afterwardswe can analyze if the genetic var-
iation of a trait is related to fitness of their mating
partners—for example, their fertility, longevity,
or parental investment.

Concluding Remarks

Behavioral genetics and behavioral ecology
had distinct developmental trajectories as scien-
tific disciplines and even today they remain

relatively separate. This state of affairs is not sur-
prising since the main research focus and ques-
tions are different in these two disciplines. In
the present manuscript, we focused on a problem
of phenotypic gambit as a potentially critical
condition which may jeopardize the findings in
behavioral ecology; however, the integration of
two fields has an extraordinary explanatory
potential in general and it can help both fields
to further develop and grow. Behavioral genetic
methodology can help human evolutionary ecol-
ogy to obtain unambiguous answers of selective
regimes acting on phenotypic traits, and to pose
more complex questions regarding the interac-
tions between individuals and their ecologies,
physical and social environments. On the other
hand, behavioral ecological approach can open
new doors of scientific inquiry for behavioral
geneticists—the latter mostly estimated genetic
and environmental variation of phenotypic traits
and analyzed its consequences so far. Behavioral
ecology can help them to study the causes of this
variation and its evolutionary dynamics; this
can provide deeper insight into the complex
evolution of behavioral traits and help estimate
future changes in phenotypic characteristics.
Therefore, evolutionary social sciences would
gain large benefits if these two research fields
would integrate: this may help in opening new
and even more exciting chapters in the story of
contemporary human evolution.
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Međedović, J. (2021). Human life histories as dynamic
networks: Using network analysis to conceptualize
and analyze life history data. Evolutionary Psycho-
logical Science, 7(1), 76–90. https://doi.org/10
.1007/s40806-020-00252-y
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